Rietveld Refinements of Four $\left(\mathbf{Z n}, \mathrm{Mg}_{3}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ Solid Solutions

PATRICIA BÉNARD
Laboratoire de Cristallochimie (LA 254), Université de Rennes 1, Avenue du Général Leclerc, F-35042 Rennes Cedex, France

and ANDERS G. NORD, PER-ERIK WERNER,* and MARIANNE WESTDAHL
Department of Structural Chemistry, Arrhenius Laboratory, University of Stockholm, S-10691 Stockholm, Sweden

Received October 11, 1991 ; in revised form February 4, 1992; accepted February 6, 1992

Abstract

Four $\left(\mathrm{Zn}_{1-x} \mathrm{Mg}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ solid solutions have been prepared at $800^{\circ} \mathrm{C}$ and the crystal structures ($P 2_{1} / n ; Z=2$) refined with the Rietveld technique on the basis of X-ray powder diffractometer data. The structure factor R-values are in the region $0.03-0.08$ for 274 independent reflections. The $\mathrm{Zn}^{+2 /}$ Mg^{+2} cation distribution is ordered with zinc preferably at the five-coordinated and magnesium at the six-coordinated metal sites. The cation distribution coefficient K_{D} is around 20 irrespective of the composition. © 1992 Academic Press, Inc.

Introduction

The distribution of divalent-metal cations between five- and/or six-coordinated sites has for many years been studied at this Institute by diffraction techniques or Mössbauer spectroscopy (e.g. Ref. (I)). The first results were published in 1977 by Nord (2). Guinier X-ray data and Rietveld refinements (3) had been used to study the solid solution $\mathrm{Zn}_{2} \mathrm{Mg}\left(\mathrm{PO}_{4}\right)_{2}\left(P 2_{1} / n\right)$ with one distinct fivecoordinated and one six-coordinated metal site. The cations were strongly ordered with zinc preferably at the five-coordinated sites and with a cation distribution coefficient $K_{\mathrm{D}} \cong 20$ for samples quenched from $1050^{\circ} \mathrm{C}$. Later studies of $22\left(\mathrm{Zn}_{1-x} \mathrm{Mg}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ solid

[^0]solutions prepared at $800^{\circ} \mathrm{C}$ showed some slight deviations from Vegard's law (4). Furthermore, another investigation by means of ${ }^{31} \mathrm{P}$ magic angle spinning NMR of $\left(\mathrm{Zn}_{1-x} \mathrm{Mg}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ phases, prepared and quenched from $1000^{\circ} \mathrm{C}$, displayed an anomalously large spread among the cation distribution coefficients, K_{D} with values ranging from 3 to 290 (5). For these reasons we have now undertaken further studies of four $(\mathrm{Zn}, \mathrm{Mg})_{3}\left(\mathrm{PO}_{4}\right)_{2}$ compositions. An illustration of the structure is shown in Fig. 1.

Experimental

The preparation methods have been described earlier $(2,4)$. The four samples were quenched from $800^{\circ} \mathrm{C}$ in cool water. All samples were analyzed with a JEOL JSM-840

Fig. 1. The crystal structure of $\gamma-(\mathrm{Zn}, \mathrm{Mg})_{3}\left(\mathrm{PO}_{4}\right)_{2}$ viewed down the c-axis.
scanning electron microscope equipped with a LINK system for energy-dispersive micro-X-ray analysis. Accurate X-ray powder diffraction data of each compound were collected at 295 K with a STOE STADI/P powder diffractometer, using a sample mounted in a $0.3-\mathrm{mm}$ rotating capillary. A symmetric focusing germanium crystal monochromator (focal distance $=440 \mathrm{~mm}$) was used to give $\mathrm{Cu} K \alpha_{1}$ radiation. The diffraction data were collected with a small linear position sensitive detector (PSD) covering 7.0° in 2θ. The PSD was moved in steps of 0.2°, thus giving an average intensity of 35 measurements at each 2θ position ($19^{\circ} \leq$ $2 \theta \leq 91^{\circ}$).
In addition, Guinier-Hägg data ($\mathrm{CuK} \alpha_{1}$) with silicon ($a=5.430880 \AA$ at $25^{\circ} \mathrm{C}(6)$) as internal standard were also collected and used for refinement of the unit cell dimensions (7), cf. results in Table I. Each cell dimension changes in an almost linear way with the composition. The figures of merit given, $M(20)$ and $F(20)$, have been defined by de Wolff (8) and Smith and

Snyder (9). The samples were found to be very pure, with all reflections indexed except in $\left(\mathrm{Zn}_{0.5} \mathrm{Mg}_{0.5}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (one very weak unindexed line at $2.9341 \AA$) and $\left(\mathrm{Zn}_{0.2} \mathrm{Mg}_{0.8}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (impurity line at $2.9633 \AA$ A).
Whenever applicable, data for the pure end member $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(10)$ are added for comparison. However, pure $\gamma-\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ does not exist, and the only single-crystal study of an Mn -doped γ - $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ phase suffers from uncertainty regarding chemical composition and crystallographic accuracy (11). Accordingly, no data for the other end member of the (Zn, Mg) series can be given.

Structure Refinements

Rietveld (3) full-profile refinements were performed with the program DBW3.2S by Wiles, Sakthivel, and Young (12), implemented on a CONVEX 220 computer by one of us (P.-E.W). The atomic coordinates of $\mathrm{Zn}_{2} \mathrm{Mg}\left(\mathrm{PO}_{4}\right)_{2}$ (2) were used as starting parameters. In the final refinements the follow-

TABLE I
Unit Cell Dimensions of Four $\left(\mathrm{Zn}_{1-x} \mathrm{Mg}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ Solid Solutions

	$\mathrm{Zn}_{73} \mathrm{Mg}_{27}$	$\mathrm{Zn}_{50} \mathrm{Mg}_{50}$	$\mathrm{Zn}_{40} \mathbf{M g}_{60}$	$\mathrm{Zn}_{20} \mathrm{Mg}_{80}$	$\mathbf{M g}_{100}{ }^{a}$
$a(\AA)$	$7.5601(4)$	$7.5727(4)$	$7.5794(6)$	$7.5913(9)$	$7.5957(8)$
$b(\AA)$	$8.3585(5)$	$8.3109(5)$	$8.2881(7)$	$8.2514(8)$	$8.2305(5)$
$c(\AA)$	$5.0529(4)$	$5.0613(3)$	$5.0661(4)$	$5.0726(5)$	$5.0775(5)$
$\beta\left({ }^{\circ}\right)$	$95.001(4)$	$94.767(4)$	$94.579(6)$	$94.291(8)$	$94.05(1)$
$V\left(\AA \AA^{3}\right)$	$318.08(4)$	$317.44(4)$	$317.23(6)$	$316.85(8)$	$316.6(1)$
$M(20)$	107	82	50	48	
$F(20)$	$156(0.005,27)$	$117(0.006,28)$	$69(0.006,47)$	$59(0.011,29)$	

Note. $M(20)$ and $F(20)$ are figures of merit as defined in Refs. (8) and (9). $\mathrm{Zn}_{73} \mathrm{Mg}_{27}$ stands for $\left(\mathrm{Zn}_{0.73} \mathrm{Mg}_{0.27}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$, and so on.
${ }^{a}$ Data for $\gamma-\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ from Ref. (10).
ing parameters were refined: one scale factor, two mixing parameters to define a thetadependent pseudo-Voigt profile shape function, three peak half-width parameters (U, $V, W)$, zero point, one asymmetry parame-
ter, six parameters in a polynomial describing the background, four unit cell parameters, 19 structural parameters describing the atomic positions and metal occupancies, and three isotropic temperature factors (for

Fig. 2. Observed diffraction patterns for $\left(\mathrm{Zn}_{1-x} \mathrm{Mg}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ solid solutions.

Fig. 3. Final Rietveld plot for $\left(\mathrm{Zn}_{0.73} \mathrm{Mg}_{0.27}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$. The upper curve illustrates the observed data, while the lower curve is the differences between observed and calculated data.
metal, phosphorous, and oxygen atoms). The occupancy parameters were refined with constraints according to stoichiometry. The angular dependence of the peak FWHM (full-width in 2θ at half-maximum) was described by the usual quadratic form in $\tan (\theta)$

$$
\mathrm{FWHM}^{2}=U \cdot \tan ^{2}(\theta)+V \cdot \tan (\theta)+W
$$

Strong correlations were only found among the half width parameters and, for $\left(\mathrm{Zn}_{0.40} \mathrm{Mg}_{0.60}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$, among the background coefficients.

Diagrams showing the observed powder intensity data for the four compositions are shown in Fig. 2. The Rietveld plot for $\left(\mathrm{Zn}_{1-x} \mathrm{Mg}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}(x-0.27)$ is shown in Fig. 3. Final R-values and other essential
data are summarized in Table II. The R_{F} value for the zinc-rich compound ($x=0.27$) is remarkably low. All refinements have included an empirical correction for absorption (14). The final atomic parameters are given in Table III.

Discussion

The structure is built of distorted ($M 1$) O_{5} polyhedra and rather regular (M2) O_{6} octahedra and PO_{4} tetrahedra (see Fig .1). Some interatomic distances and angles are given in Table IV. The standard deviations as obtained from the computer program (12) may be multiplied by correction factors to give "probable errors" with regard to serial correlations by the procedure described by Bé-

TABLE II
Essential Data from the Final Rietveld Refinements

	$\mathrm{Zn}_{73} \mathrm{Mg}_{27}$	$\mathrm{Zn}_{50} \mathrm{Mg}_{50}$	$\mathrm{Zn}_{40} \mathrm{Mg}_{60}$	$\mathrm{Zn}_{20} \mathrm{Mg}_{80}$
R_{F}	0.029	0.071	0.067	0.076
R_{B}	0.042	0.096	0.081	0.120
$R_{\omega p}$	0.059	0.076	0.035	0.061
d	0.43	0.31	0.93	0.36
N	274	274	274	274
$\mathrm{FWHM}_{\text {min }}\left({ }^{\circ}\right)$	0.112	0.114	0.107	0.115
$\mathrm{FWHM}_{\text {max }}\left({ }^{(}\right)$	0.202	0.194	0.150	0.250

Note. $N=$ number of independent reflections; $d=$ Durbin-Watson statistic d-value according to Hill and Flack (13); $\boldsymbol{R}_{F}=$ structure factor R-value. Other parameters defined as in Ref. (12). $\mathrm{Zn}_{73} \mathrm{Mg}_{27}$ stands for $\left(\mathrm{Zn}_{0.73} \mathrm{Mg}_{0.27}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$, and so on.

TABLE III
Atomic Coordinates and Isotropic Temperature Factors (\AA^{2})

Atom	$\mathrm{Zn}_{73} \mathrm{Mg}_{27}$	$\mathrm{Zn}_{50} \mathrm{Mg}_{50}$	$\mathrm{Zn}_{40} \mathrm{Mg}_{60}$	$\mathrm{Zn}_{20} \mathrm{Mg}_{80}$
$M 1$ occupancy	$\mathrm{Zn}_{0.98} \mathrm{Mg}_{0.082}$	$\mathrm{Zn}_{0.697} \mathrm{Mg}_{0.303}$	$\mathrm{Zn}_{0.567} \mathrm{Mg}_{0.433}$	$\mathrm{Zn}_{0.291} \mathrm{Mg}_{0.709}$
x	$0.6176(1)$	$0.6155(2)$	$0.6136(2)$	$0.6121(5)$
y	$0.1392(1)$	$0.1389(2)$	$0.1396(2)$	$0.1391(4)$
z	$0.0842(2)$	$0.0859(4)$	$0.0900(3)$	$0.0926(7)$
$M 2$ occupancy	$\mathrm{Zn}_{0.34} \mathrm{Mg}_{0.646}$	$\mathrm{Zn}_{0.106} \mathrm{Mg}_{0.894}$	$\mathrm{Zn}_{0.066} \mathrm{Mg}_{0.934}$	$\mathrm{Zn}_{0.018} \mathrm{Mg}_{0.982}$
$\mathrm{~B}(M 1, M 2)^{a}$	$2.30(4)$	$2.06(7)$	$1.66(6)$	$2.80(9)$
$\mathrm{P} x$	$0.1989(3)$	$0.1992(4)$	$0.1996(4)$	$0.1991(6)$
y	$0.1927(3)$	$0.1948(4)$	$0.1945(3)$	$0.1966(5)$
z	$0.0366(4)$	$0.0369(6)$	$0.0349(5)$	$0.0354(9)$
$B(\mathrm{P})$	$2.45(6)$	$2.69(9)$	$1.70(8)$	$3.08(10)$
$\mathrm{O} x$	$0.0534(6)$	$0.0595(8)$	$0.0587(7)$	$0.0621(10)$
y	$0.1338(6)$	$0.1384(8)$	$0.1399(7)$	$0.1430(10)$
z	$0.8236(8)$	$0.8217(11)$	$0.8205(10)$	$0.8229(14)$
$\mathrm{O} 2 x$	$0.1289(7)$	$0.1309(10)$	$0.1276(8)$	$0.1247(12)$
y	$0.1946(6)$	$0.1943(8)$	$0.1951(7)$	$0.1952(10)$
z	$0.3094(10)$	$0.3031(14)$	$0.3069(11)$	$0.3080(16)$
$\mathrm{O} x$	$0.2577(5)$	$0.2615(7)$	$0.2595(6)$	$0.2633(10)$
y	$0.3575(6)$	$0.3617(8)$	$0.3616(7)$	$0.3633(10)$
z	$0.9427(8)$	$0.9435(12)$	$0.9403(10)$	$0.9398(15)$
$O 4 x$	$0.3605(6)$	$0.3584(9)$	$0.3605(7)$	$0.3593(11)$
y	$0.0778(5)$	$0.0751(7)$	$0.0770(6)$	$0.0787(9)$
z	$0.0556(9)$	$0.0491(12)$	$0.0518(10)$	$0.0426(16)$
$B($ oxygen $)$	$2.17(7)$	$2.15(10)$	$1.71(9)$	$2.46(13)$

Note. $\mathrm{Zn}_{73} \mathrm{Mg}_{27}$ stands for $\left(\mathrm{Zn}_{0.73} \mathrm{Mg}_{0.27}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$, and so on. * Space group $P 2_{1} / n$ (No.
14) with the equivalent positions $\pm(x, y, z), \pm\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$.
${ }^{a}$ Atom $M 2$ fixed at ($0,0, \frac{1}{2}$).

TABLE IV
Some Interatomic Distances (\AA) and Angles $\left({ }^{\circ}\right)$

	$\mathrm{Zn}_{73} \mathbf{M g} \mathbf{2}^{7}$	$\mathrm{Zn}_{50} \mathrm{Mg}_{50}$	$\mathrm{Zn}_{40} \mathrm{Mg}_{60}$	$\mathrm{Zn}_{20} \mathrm{Mg}_{80}$	$\mathrm{Mg}_{100}{ }^{\text {a }}$
M1-O1	2.32(1)	2.26(2)	2.23(1)	2.19(2)	2.142(7)
M1-O2	1.97(1)	2.00 (2)	1.99(1)	2.00 (2)	1.965(8)
M1-03	2.02(1)	2.04(2)	2.02(1)	2.03(2)	2.063(8)
M1-04	2.00 (1)	2.01(2)	1.98(1)	1.98(2)	2.012(5)
M1-O4	1.96(1)	1.92(2)	1.95(1)	1.94(2)	1.961(6)
Mean	2.05	2.05	2.03	2.03	2.028
M2-O1 ($\times 2$)	1.99(1)	2.01(2)	2.02(1)	2.04(2)	2.034(8)
M2-O2 ($\times 2$)	2.16(1)	2.18(2)	2.16(1)	2.14(2)	2.179(6)
M2-O3 ($\times 2$)	2.18(1)	2.14(2)	2.16(1)	2.12(2)	$2.150(5)$
Mean	2.11	2.11	2.11	2.10	2.121
$\mathrm{P}-\mathrm{O} 1$	1.55(1)	1.53(2)	1.53(1)	1.51(2)	$1.535(8)$
$\mathrm{P}-\mathrm{O} 2$	1.52(1)	$1.48(2)$	1.52(1)	1.53(2)	$1.508(8)$
$\mathrm{P}-\mathrm{O} 3$	1.54(1)	1.55(2)	1.55(1)	$1.55(2)$	$1.534(6)$
$\mathrm{P}-\mathrm{O} 4$	1.55(1)	1.56(2)	1.56(1)	1.56(2)	1.527(5)
Mean	1.54	1.53	1.54	1.54	1.526
O1-P-O2	110.6(6)	111.9(12)	$111.3(6)$	111.2(14)	111.77
01-P-O3	106.1(6)	105.5(12)	104.5(6)	104.7(14)	103.72
01-P-O4	110.7(6)	108.6(12)	110.7(6)	109.2(14)	110.43
O2-P-O3	113.8(6)	114.7(12)	114.4(6)	115.8(14)	112.08
O2-P-O4	106.6(6)	106.8(12)	106.7(6)	108.3(14)	108.61
O3-P-O4	109.1(6)	109.2(12)	109.2(6)	107.4(14)	110.19
Mean	109.5	109.4	109.5	109.4	109.46
$\mathrm{O} 1-\mathrm{Ml}-\mathrm{O} 2^{\text {b }}$	79.4(5)	80.5(8)	80.6(4)	81.0(9)	83.52
O1-M1-O3	68.8(4)	69.2(7)	69.8(4)	69.8(9)	70.02
Ol-M1-O4	90.1(4)	92.4(7)	92.6(4)	94.0(9)	94.53
O4-M1-O4'	81.3(5)	81.4(9)	81.3(5)	81.7(9)	82.12
$\mathrm{O} 1-\mathrm{M} 2-\mathrm{O}^{\text {c }}$	82.9(5)	82.3(8)	81.7(4)	81.2(9)	81.03
O1-M2-O3	95.2(4)	94.0(7)	93.6(4)	92.8(9)	94.03
O2-M2-O3	93.7(5)	92.8(8)	93.3(8)	93.8(9)	93.16

Note. $\mathrm{Zn}_{73} \mathrm{Mg}_{27}$ stands for $\left(\mathrm{Zn}_{0.73} \mathrm{Mg}_{0.27}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$, and so on. "Probable errors" as defined by Bérar and Lelann (15) are in parentheses.
${ }^{a}$ Data for $\gamma-\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ from Ref. (10).
${ }^{b}$ For the five-coordinated $M 1$ site only angles $<100^{\circ}$ are given.
${ }^{c}$ From the space group symmetry, the following general relations hold for the sixcoordinated $M 2$ site:

$$
\mathrm{OX}-M 2-\mathrm{O} Y\left(=\mathrm{O} X^{\prime}-M 2-\mathrm{O} Y^{\prime}\right)=\phi \quad(X \text { and } Y=1,2, \text { or } 3)
$$

then

$$
\begin{aligned}
& \mathrm{OX}-M 2-\mathrm{O} Y^{\prime}\left(=O X^{\prime}-M 2-\mathrm{OY}\right)=180-\phi \\
& \mathrm{OX}-M 2-\mathrm{O} X^{\prime}=180
\end{aligned}
$$

rar and Lelann (15). The factors for the four compositions are, in the order given in Table IV: 2.3, 2.9, 1.85, and 2.7.

Corresponding distances and angles in the four phases are consistent, thus reflecting
the good reproducibility of the refinement procedure. The average metal-oxygen distances are almost constant but with a slight decrease as the smaller Mg^{2+} ion replaces Zn^{2+} in the structure. The change in dis-
tance with composition is most noticeable for $M 1-\mathrm{O} 1$, which decreases from $2.32 \AA$ in the zinc-rich to $2.19 \AA$ in the magnesiumrich phase. The $\mathrm{P}-\mathrm{O}$ distances are reasonable, and the mean values in good agreement with the $\mathrm{P}-\mathrm{O}$ grand mean of $1.537 \AA$ as obtained for divalent-metal orthophosphates (1).

The cation distribution coefficient K_{D} for the exchange equilibrium

$$
\begin{aligned}
& \mathrm{Zn}^{2+}(\mathrm{M} 2)+ \mathrm{Mg}^{2+} \\
& \quad(M 1) \leftrightarrows \\
& \mathrm{Zn}^{2+}(M 1)+\mathrm{Mg}^{2+}(M 2)
\end{aligned}
$$

is conventionally defined as

$$
\begin{aligned}
& K_{\mathrm{D}}= \\
& \quad\left[X_{\mathrm{Zn}}(M 1) \cdot\right. \\
& \left.X_{\mathrm{Mg}}(M 2)\right] /\left[X_{\mathrm{Zn}}(M 2) \cdot X_{\mathrm{Mg}}(M 1)\right] .
\end{aligned}
$$

Accordingly, the K_{D} coefficients here obtained for the solid solutions are $20,19,19$, and 22 . The last figure is very uncertain because of the small amount of zinc in the compound, however. On the basis of the present and the above cited earlier results $(1,3)$ we therefore conclude that the cation distribution coefficient K_{D} at $800^{\circ} \mathrm{C}$ for the $\left(\mathrm{Zn}_{1-x} \mathrm{Mg}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ series is almost constant and around 20 . Similar results of almost constant K_{D} values irrespective of composition have been demonstrated in the isostructural solid solution series $\left(\mathrm{Zn}_{1-x} \mathrm{Fe}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and $\left(\mathrm{Mg}_{1-x} \mathrm{Fe}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}$ by means of ${ }^{57} \mathrm{Fe}$ Mössbauer spectroscopy (16). The NMR results published by Jakeman et al. (5) on phases quenched from $1000^{\circ} \mathrm{C}$ are therefore quite interesting. The discrepancy in the results may be due to difference in equilibrium temperature or on suggested (4) but hitherto not
demonstrated superstructures within this system.

Acknowledgments

This work has received financial support from the Swedish Natural Science Rescarch Council and the Centre National de la Recherche Scientifique.

References

1. A. G. Nord, in "Stereochemistry of Organometallic and Inorganic Compounds" (I. Bernal, Ed.), Vol. I, pp. 50-145, Elsevier, Amsterdam and New York (1986).
2. A. G. Nord, Mater. Res. Bull. 12, 563 (1977).
3. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
4. A. G. Nord and T. Stefanidis, Mater. Res. Bull. 16, 1121 (1981).
5. R. J. B. Jakeman, A. K. Cheetham, N. J. Clayden, and C. M. Dobson, J. Am. Chem. Soc. 107, 6249 (1985).
6. C. R. Hubbard, H. E. Swanson, and F. A. Mauer, J. Appl. Crystallogr. 8, 45 (1975).
7. P.-E. Werner, Ark. Kemi 31, 513 (1969).
8. P. M. De Wolff, J. Appl. Crystallogr. 1, 108 (1968).
9. G. S. Smith and R. L. Snyder, J. Appl. Crystallogr. 12, 60 (1979).
10. A. G. Nord and P. Kierkegatd, Acta Chem. Scand. 22, 1466 (1968).
11. C. Calvo, J. Phys. Chem. Solids. 24, 141 (1963).
12. D. B. Wiles, A. Sakthivel, and R. A. Young, "User's Guide to Program DBW3.2S for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns (Version 8804),' School of Physics, Georgia Institute of Technology, Atlanta.
13. R. J. Hill and H. D. Flack, J. Appl. Crystallogr. 20, 356 (1987).
14. P.-E. Werner and M. Westdahl, to be published.
15. J. F. Berar and P. Lelann, J. Appl. Crystallogr. 24, 1 (1991).
16. H. Annersten, T. Ericsson, and A. G. Nord, J. Phys. Chem. Solids 41, 1235 (1980).

[^0]: * To whom correspondence should be addressed. 0022-4596/92 \$5.00
 Copyright © 1992 by Academic Press, Inc. All rights of reproduction in any form reserved.

